عاجل جدا:أريد معلومات عن photodiode

سلملم555

عضو جديد
إنضم
7 مارس 2007
المشاركات
8
مجموع الإعجابات
0
النقاط
0
السلام عليكم
اريد معلومات مهمة عن photodiode من ناحية تاريخها وطريقة عملها
وفائدتها واتمنى من الي عنده اي معلومات عن هذا الموضوع انه ينزله في اسرع وقت
وشكرا
 

مواضيع مماثلة

عادل الامعري

عضو جديد
إنضم
10 يوليو 2008
المشاركات
36
مجموع الإعجابات
0
النقاط
0
اخي العزيز الديود الضوئي عمله بسيط جداً
تتناسب كمية الضوء المسلطة عليه عكساً مع مقاومتة الامامية
حيث عند زيادة الضوء تنقص مقاومة الامامية ويمر جهد الانحياز عبره
احد استخدامته
جهاز كشف الدخان المستخدم للتحذير من اندلاع حريق في غرفة أو مبني من الاجهزة الهامة والضرورية فبالرغم من انخفاض تكلفتها التي تبلغ في حدود 15 دولار فإنها تقي من نشوب حريق قد يقضي على ممتلكات مؤسسة بكاملها. يتكون جهاز كاشف الدخان Smoke Detector من جزئين اساسيين اولهما مجس حساس للضوء وهو الفوتوديود Photodiode والجزء الثاني هو جهاز الكتروني يصدر صوت منبه مرتفع. يعمل جهاز انذار الحريق من خلال بطارية 9 فولت أو من خلال مزود الكهرباء المنزلي.



فكرة عمل جهاز انذار الحريق


يعتمد هذا النوع من كاشف الدخان على فوتوديود وهو حساس للضوء، وإذا ما تم تصميم دائرة إلكترونية بحيث اذا سقط الضوء على الفوتوديود تصدر الدائرة الإلكترونية جرس منبه ذو صوت عالي. وهذه فكرة عمل جهاز انذار الحريق حيث أن الجهاز يحتوي على شعاع ضوئي عادي يصدر من ديود باعث للضوء LED مثبت في نهاية انبوبة اسطوانية الشكل وعلى زاوية 90 درجة يتفرع اسطوانة اخرى مثبت في
 
التعديل الأخير:

محبكم في الله

عضو جديد
إنضم
18 أغسطس 2008
المشاركات
90
مجموع الإعجابات
1
النقاط
0
Généralités [modifier]
Comme toute diode en électronique, elle est constituée d'une jonction PN. Cette configuration de base fut améliorée par l'introduction d'une zone intrinsèque (I) pour constituer la photodiode PIN. En absence de polarisation (appelé mode photovoltaïque) elle génère une tension. En polarisation inverse par une alimentation externe (mode photoampérique), elle génère un courant. On repère 3 régions distinctes :
  1. une zone de charge d'espace (ZCE)
  2. une région neutre de type N
  3. une région neutre de type P.
Ce composant relève de l'optoélectronique.

Fonctionnement [modifier]


Quand un semi-conducteur est exposé à un flux lumineux, les photons sont absorbés à condition que l’énergie du photon (Eph) soit supérieure à la largeur de la bande interdite (Eg). Ceci correspond à l’énergie nécessaire à l’électron pour se libérer de la barrière de potentiel qui le maintient dans le solide. L’existence de la bande interdite entraîne l’existence d’un seuil d’absorption tel que hν0 = Eg. Lors de l’absorption d’un photon, deux phénomènes peuvent se produire :
  • La photoémission : c'est la sortie de l’électron hors du matériau photosensible. L’électron ne peut sortir que s'il est excité près de la surface.
  • La photoconductivité : l’électron est libéré à l’intérieur du matériau. Les électrons ainsi libérés contribuent à la conductivité électrique du matériau.
Lorsque les photons pénètrent dans le semi-conducteur munis d’une énergie suffisante, ils peuvent créer des photoporteurs en excès dans le matériau. On observe alors une augmentation du courant. Deux mécanismes interviennent simultanément :
  • Il y a création de porteurs minoritaires, c'est-à-dire des électrons dans la région P et des trous dans la région N. Ceux-ci sont susceptibles d’atteindre la ZCE par diffusion et d’être ensuite propulsés vers des zones où ils sont majoritaires. En effet, une fois dans la ZCE, la polarisation étant inverse, on favorise le passage des minoritaires vers leur zone de prédilection. Ces porteurs contribuent ainsi à créer le courant de diffusion.
  • Il y a génération de paires électron trou dans la ZCE, qui se dissocient sous l’action du champ électrique ; l’électron rejoignant la zone N, le trou la zone P. Ce courant s’appelle le courant de transit ou photocourant de génération.
Ces deux contributions s’ajoutent pour créer le photocourant Iph qui s’additionne au courant inverse de la jonction. L’expression du courant traversant la jonction est alors :
7418ebbaf671fbe4a7e6c61c4b915d14.png


Caractéristiques électriques [modifier]

Une photodiode peut être représentée par une source de courant Iph (dépendant de l’éclairement), en parallèle avec la capacité de jonction Cj et une résistance de shunt Rsh d'une valeur élevée (caractérisant la fuite de courant), l'ensemble étant en série avec une résistance interne Rs :
  • Résistance de shunt : la résistance de shunt d'une photodiode idéale est infinie. En réalité cette résistance est comprise entre 100 kΩ et 1 GΩ selon la qualité de la photodiode. Cette résistance est utilisée pour calculer le courant de fuite (ou bruit) en mode photovoltaïque, c'est-à-dire sans polarisation de la photodiode.
  • Capacité de jonction : cette capacité est due à la zone de charge ; elle est inversement proportionnelle à la largeur de charge d'espace (W) :
    93791ca0b755965b96d0f675ee78ddd9.png
    . Où A est la surface de coupe de la photodiode. W est proportionnel à la polarisation inverse et la capacité diminue si la polarisation augmente. Cette capacité oscille autour de 100 pF pour les faibles polarisations à quelques dizaines de pF pour les polarisations élevées.
  • Résistance interne : cette résistance est essentiellement due à la résistance du substrat et aux résistances de contact. Rs peut varier entre 10 et 500Ω selon la surface de la photodiode.
Autres caractéristiques :
  • Temps de réponse : il est habituellement défini comme le temps nécessaire pour atteindre 90% du courant final dans la photodiode. Ce temps dépend de 3 facteurs :
    • ttransit : temps de parcours des porteurs dans la zone de charge d'espace.
    • tdiffusion : temps de parcours des porteurs dans les régions neutres.
    • la constante de temps tτ : constante de temps du schéma équivalent (de résistance RS + RC et de capacité Cj + Cγ) : tτ = (RS + RC)(Cj + Cγ). Ainsi la constante de temps est égale à :
      a732ef652d4238778bc7faafaa265e7f.png
      . Mais chaque temps est difficile à déterminer ; seul le temps global est pris en compte. En général le temps de diffusion est plus lent que le temps de transit.
  • Photosensibilité : elle est définie par
    8b9eaae744e512f611ef5bbc5e54bd3f.png
    et détermine les conditions d’utilisation (200nA/Lux pour les photodiodes à germanium (Ge), 10nA/Lux pour les photodiodes à silicium (Si)). Les photodiodes Ge présentent une photosensibilité plus importante mais leur courant d’obscurité est notable I0 = 10 uA. Il est donc préférable d’utiliser des photodiodes Si (I0 = 10 pA) pour la détection des éclairements faibles.
  • Rendement de capture : c’est le rapport du nombre de charges élémentaires traversant la jonction sur le nombre de photons incidents. Ce rendement dépend de la longueur d’onde du rayonnement et des paramètres de construction du composant. Il va définir le domaine spectral d’utilisation du détecteur.
Optimisation [modifier]

Pour avoir une meilleure efficacité quantique, la majorité des photoporteurs devront être créés dans la ZCE, où le taux de recombinaison est faible. On y gagne ainsi au niveau du temps de réponse de la photodiode. Pour réaliser cette condition, la photodiode devra avoir une zone frontale aussi mince que possible. Cette condition limite cependant la quantité de rayonnement absorbée. Il s’agit donc de faire un compromis entre la quantité de rayonnement absorbée et le temps de réponse de la photodiode : généralement
6308ba1626ae791f1d423d76f1b39d06.png
. W étant la largeur de la ZCE et α, le coefficient d’absorption.
Nous venons de voir l’intérêt d’avoir une zone de charge d’espace suffisamment grande pour que le photocourant soit essentiellement créé dans cette zone et suffisamment mince pour que le temps de transit ne soit pas trop important. On peut toutefois augmenter artificiellement en intercalant une région intrinsèque I entre les régions de type N et de type P. Ceci conduit à un autre type de photodiode : les photodiodes PIN.
Si la polarisation inverse de la structure est suffisante, un champ électrique important existe dans toute la zone intrinsèque et les photoporteurs atteignent très vite leur vitesse limite. On obtient ainsi des photodiodes très rapides. De plus, le champ électrique dans la région de déplétion (la ZCE) empêche la recombinaison des porteurs, ce qui rend la photodiode très sensible.

Cas des phototransistors [modifier]


Symbole du phototransistor.


Un phototransistor est un transistor bipolaire dont la base est sensible au rayonnement lumineux ; la base est alors dite flottante puisqu’elle est dépourvue de connexion. Lorsque la base n’est pas éclairée, le transistor est parcouru par le courant de fuite ICE0. L’éclairement de la base conduit à un photocourant Iph que l’on peut nommer courant de commande du transistor. Celui-ci apparaît dans la jonction collecteur-base sous la forme :
IC = βIph + ICE0 .
Le courant d'éclairement du phototransistor est donc le photocourant de la photodiode collecteur-base multiplié par l'amplification β du transistor. Sa réaction photosensible est donc nettement plus élevée que celle d’une photodiode (de 100 à 400 fois plus). Par contre le courant d’obscurité est plus important.
On observe une autre différence entre phototransistor photodiode : la base du phototransistor est plus épaisse, ce qui entraîne une constante de temps plus importante et, donc une fréquence de coupure plus basse que celle des photodiodes. On peut éventuellement augmenter la fréquence de coupure en diminuant la photosensibilité en connectant la base à l'émetteur.
مقتبس من الويكوبديا وهناك الكثير عليه في الانترنات حدد ما تريد وما بتخاف الي في الملتقي مهندسين يعتمد عليهم
 

سلملم555

عضو جديد
إنضم
7 مارس 2007
المشاركات
8
مجموع الإعجابات
0
النقاط
0
عادل الامعري
محبكم في الله

شكرا جزيلا على هذه المعلومات وجزاكم الله كل خير:84:
 
أعلى