Design of a Building Integrated Photovoltaics (BIPV) System


عضو جديد
13 نوفمبر 2009
مجموع الإعجابات
BIPV systems should be approached to where energy conscious design techniques have been employed, and equipment and systems have been carefully selected and specified. They should be viewed in terms of life-cycle cost, and not just initial, first-cost because the overall cost may be reduced by the avoided costs of the building materials and labor they replace. Design considerations for BIPV systems must include the building's use and electrical loads, its location and orientation, the appropriate building and safety codes, and the relevant utility issues and costs.
Steps in designing a BIPV system include:
  1. Carefully consider the application of energy-conscious design practices and/or energy-efficiency measures to reduce the energy requirements of the building. This will enhance comfort and save money while also enabling a given BIPV system to provide a greater percentage contribution to the load.
  2. Choose Between a Utility-Interactive PV System and a Stand-alone PV System:
    • The vast majority of BIPV systems will be tied to a utility grid, using the grid as storage and backup. The systems should be sized to meet the goals of the owner—typically defined by budget or space constraints; and, the inverter must be chosen with an understanding of the requirements of the utility.
    • For those 'stand-alone' systems powered by PV alone, the system, including storage, must be sized to meet the peak demand/lowest power production projections of the building. To avoid over sizing the PV/battery system for unusual or occasional peak loads, a backup generator is often used. This kind of system is sometimes referred to as a "PV-genset hybrid."
  3. Shift the Peak: If the peak building loads do not match the peak power output of the PV array, it may be economically appropriate to incorporate batteries into certain grid-tied systems to offset the most expensive power demand periods. This system could also act as an uninterruptible power system (UPS).
  4. Provide Adequate Ventilation: PV conversion efficiencies are reduced by elevated operating temperatures. This is truer with crystalline silicon PV cells than amorphous silicon thin-films. To improve conversion efficiency, allow appropriate ventilation behind the modules to dissipate heat.
  5. Evaluate Using Hybrid PV-Solar Thermal Systems: As an option to optimize system efficiency, a designer may choose to capture and utilize the solar thermal resource developed through the heating of the modules. This can be attractive in cold climates for the pre-heating of incoming ventilation make-up air.
  6. Consider Integrating Daylighting and Photovoltaic Collection: Using semi-transparent thin-film modules, or crystalline modules with custom-spaced cells between two layers of glass, designers may use PV to create unique daylighting features in façade, roofing, or skylight PV systems. The BIPV elements can also help to reduce unwanted cooling load and glare associated with large expanses of architectural glazing.
  7. Incorporate PV Modules into Shading Devices: PV arrays conceived as "eyebrows" or awnings over view glass areas of a building can provide appropriate passive solar shading. When sunshades are considered as part of an integrated design approach, chiller capacity can often be smaller and perimeter cooling distribution reduced or even eliminated.
  8. Design for the Local Climate and Environment: Designers should understand the impacts of the climate and environment on the array output. Cold, clear days will increase power production, while hot, overcast days will reduce array output;
    • Surfaces reflecting light onto the array (e.g., snow) will increase the array output;
    • Arrays must be designed for potential snow- and wind-loading conditions;
    • Properly angled arrays will shed snow loads relatively quickly; and,
    • Arrays in dry, dusty environments or environments with heavy industrial or traffic (auto, airline) pollution will require washing to limit efficiency losses.
  9. Address Site Planning and Orientation Issues: Early in the design phase, ensure that your solar array will receive maximum exposure to the sun and will not be shaded by site obstructions such as nearby buildings or trees. It is particularly important that the system be completely unshaded during the peak solar collection period consisting of three hours on either side of solar noon. The impact of shading on a PV array has a much greater influence on the electrical harvest than the footprint of the shadow.
  10. Consider Array Orientation: Different array orientation can have a significant impact on the annual energy output of a system, with tilted arrays generating 50%-70% more electricity than a vertical façade.
  11. Reduce Building Envelope and Other On-site Loads: Minimize the loads experienced by the BIPV system. Employ daylighting, energy-efficient motors, and other peak reduction strategies whenever possible.
  12. Professionals: The use of BIPV is relatively new. Ensure that the design, installation, and maintenance professionals involved with the project are properly trained, licensed, certified, and experienced in PV systems work.
In addition, BIPV systems can be designed to blend with traditional building materials and designs, or they may be used to create a high-technology, future-oriented appearance. Semi-transparent arrays of spaced crystalline cells can provide diffuse, interior natural lighting. High profile systems can also signal a desire on the part of the owner to provide an environmentally conscious work environment.

مواضيع مماثلة