شرح الوثاقة الترجيحية : مفصل أم وثاقة؟

dr.tatish

عضو جديد
إنضم
23 مارس 2011
المشاركات
26
مجموع الإعجابات
45
النقاط
0
الدكتور المهندس محمد طاطيش

حكم المنطق الثنائي مقارباتنا في حل المسائل عموماً بطريقة حدية. فالدارة مفتوحة أو مغلقة والجواب صح أو خطأ وأبجدية عصر المعلومات والإتصالات تتألف من حرفين فقط صفر وواحد. في الواقع قد لا تكون الأنظمة الطبيعية حدية ولكنها تقع بين هذه الحدود.

إذا قفزنا مباشرةً إلى المسائل الهندسية وتحديداً الهندسة الإنشائية نجد أن مفهوم الإتصال بين العناصر في المنشأ محصور بين حدين : مفصل أو وثاقة. في المفصل نلغي بعض درجات الحرية بشكل كامل طبعاً بشرط عدم الإخلال باستقرار المنشأ. هذا لعمري تجسيد واضح للمنطق الثنائي. في حين يعرف أغلب المهندسين من مشاهداتهم وخبراتهم في تنفيذ المنشأت أنه قد يكون من المستحيل تنفيذ مفصل تام. هذا ممكن فقط في التحليل الرياضي للمنشأ. إن حصر مسألة الإتصال بين عناصر المنشأ بشكل حدي أي مفصل أو وثاقة وخاصة في بعض المواقع ( مثلاُ استناد جسر على جدار قص بشكل متعامد معه أو استناد جسر ثانوي على جسر رئيس) هو قرار تترتب عليه نتائج في غاية الأهمية الفنية والإقصادية. وهو قرار يتوجب على المهندس الكفء أن يواجهه.

تزداد المسألة صعوبةً بشكل عام عندما يتم تقديمها إلى متخذ القرار بشكل وصفي Qualitative. كأن نقول مثلاً وثاقة جزئية أو شبه وثاقة. تعلمَ المهندس أن يتعامل دوماً مع الأرقام، هذا يجعل المسألة بالنسبة له أكثر وضوحاً. هنا ينقذنا فرع من الرياضيات الحديثة يُدعى المنطق الترجيحي Fuzzy Logic. نستطيع بمساعدة هذا الفرع تحويل المسائل الكيفية أو النوعية إلى أرقام طبعاً بالإستعانة بالمهندسين الخبراء.
لنبدأ من المنطق الثنائي ونفترض أننا سنعبرعن الوثاقة المثالية بدالة عضوية تساوي واحد كناية عن أن هذه الوثاقة هي وثاقة تامة والمفصل المثالي بدالة عضوية تساوي صفر كناية عن أن هذ المفصل هو مفصل تام. هل يمكننا التفكير رقمياً في تدرج ما من الوثاقة المثالية إلى المفصل المثالي؟ الجدول التالي يقدم مقاربة ترجيحية لهذا السؤال.
وصف الوثاقةوثاقة مثاليةوثاقة جيدةوثاقة متوسطةوثاقة ضعيفةمفصل مثالي
دالة العضوية10.7-0.8-0.90.4-0.5-0.60.1-0.2-0.30


حاولت البرامج الإنشائية الشهيرة (Etabs كمثال) أن تقدم مقاربة لحل مسألة الإتصال الترجيحي بين العناصر الإنشائية. ففي البرنامج المذكور يستطيع المستخدم تعريف قيم نوابض لدرجات الحرية الستة تعكس الحالة الترجيحية لمنطقة الإتصال المدروسة. ولكن البرنامج يطلب إدخال قيمة رقمية في حقل النوابض، أي أن المهندس الدارس بخبرته عليه أن يتخذ القرار في تحويل الإتصال الترجيحي إلى رقم محدد.

مثال
جائزبيتوني أبعاده 30x60 سم، مجازه 6 متر موثوق من الطرفين وثاقة مثالية (درجات الحرية الستة مقيدة)، محمل بحمل موزع بانتظام قيمته الكلية 10 KN/M، معامل مرونة البيتون 23500 MPa وعزم عطالة المقطع حول المحور الرئيس 12/ I[SUB]3-3[/SUB] = bh[SUP]3[/SUP]يساوي 5.4E-03 M[SUP]4[/SUP][SUP] .[/SUP]
سنركز في هذا المثال على الدوران حول المحور الرئيس أي درجة الحرية السادسة (M[SUB]3-3[/SUB]). نعلم من ميكانيك الإنشاءات أن القساوة على الدوران بالتعريف هي العزم اللازم لإحداث واحدة الدوران ويساوي:
K[SUB]Ѳ[/SUB]= 4 * E * I / L = 4 * 23500000 * 5.4E-03 / 6 = 90000 KN M
فإذا فرضنا أن n هي نسبة التحرير المطلوب إخضاع درجة الحرية المدروسة لها فإن n = 0 هي كناية عن وثاقة تامة أو بدون تحرير بينما n = 1 هي كناية عن مفصل تام أو تحرير كامل.
يبين الجدول أدناه كيفية حساب القيم المختلفة للعزم عند العقدة من نسبة التحرير المطلوبة وفق المعادلة التالية:
Frame Partial Fixity Spring = [(1-n) / n] * K[SUB]Ѳ[/SUB]
في الختام إن العناصر ذات القساوة غير المنتهية ∞ أو المساند الصلبة لا وجود لها في في المنشأت الواقعية. يمكننا فقط أن نقول أن عنصراً أو مسنداً ما هو قاسي (جاسىء) مقارنةً مع الأجزاء الأخرى في المنشأ. وفي أكثر الحالات تكون القساوة النسبية لما ندعوه عناصر صلبة هي حوالي 100 ضعف قساوة العناصر المجاورة. أضف إلى ذلك أن استخدام مثل هذه القيمة الواقعية عند النمذجة الحاسوبية لن يسبب مشاكل عددية في التحليل.
نسبة التحرير nمعامل التحريرقيمة نابض الوثاقة الجزئية KN Mالعزم KN M
0 = وثاقة مثالية∞ = 10090000*10030
0.2490000*424.4
0.41.590000*1.518.6
0.60.666790000*0.666712.6
0.80.2590000*0.256.4
1 = مفصل مثالي090000*00
 

المرفقات

  • Frame Releases - Partial Fixity 25%.jpg
    Frame Releases - Partial Fixity 25%.jpg
    36.7 KB · المشاهدات: 59
  • Frame Releases - Partial Fixity.jpg
    Frame Releases - Partial Fixity.jpg
    35 KB · المشاهدات: 18
  • Release.jpg
    Release.jpg
    9.3 KB · المشاهدات: 17
التعديل الأخير:

مواضيع مماثلة

د.م يوسف حميضة

إستشاري الهندسة المدنية
إستشاري
إنضم
2 يناير 2013
المشاركات
2,379
مجموع الإعجابات
3,181
النقاط
0
كل الشكر والامتنان للدكتور محمد
على هذه المداخلة القيمة والشرح العلمي والمستفيض
لكن نستغرب من القائمين على برمجة برنامج ايتاب
او مالحكمة من عدم القيام البرنامج بحساب عامل الصلابة اوالجساءة
للعقدة الوثاقة
K[SUB]Ѳ[/SUB]= 4 * E * I / L
وحسابها يدويا والوقوع في اخطاء يمكن تفاديها بالحاسب
ويكفي ادخال نسبة التصغيروالتحرير
Partial Fixity

attachment.php



تحياتي
 
التعديل الأخير:

علي محمد يوسف

عضو تحرير المجلة
إنضم
18 أغسطس 2007
المشاركات
3,116
مجموع الإعجابات
587
النقاط
0
السلام عليكم ورحمة الله وبركاته
جزاكم الله خيرا وبارك الله فيكم
لعل الأمان هو ما يبرر اللجوء الى القيم الحدية 0 أو 1
مع تمنياتي لكم دوام الصحة والتوفيق
 
أعلى